侧耦合谐振腔的多重独立可调谐 Fano 共振 传感特性

陈颖,许扬眉¹*,谢进朝¹,高新贝¹,曹景刚¹,李少华² ¹燕山大学电气工程学院测试计量技术与仪器河北省重点实验室,河北秦皇岛 066004; ²河北先河环保科技股份有限公司,河北 石家庄 050035

摘要 基于表面等离极化激元在亚波长结构的传输特性,提出了一种含单挡板的金属-介质-金属(MIM)波导耦合 双T型谐振腔的结构。在近场耦合作用下,单挡板形成的较宽连续态与单T型腔形成的较窄离散态,经过复杂的 干涉相消形成非对称的双重 Fano 共振峰。基于耦合模理论,研究了单挡板 MIM 波导耦合单 T型腔 Fano 共振的 产生机理,并采用有限元分析法对该结构进行了模拟仿真。在此基础上,研究了含双T型腔结构的四重 Fano 共振 形成过程,分析了上下T型腔结构参数对 Fano 共振峰的影响。结果表明,上下T型腔产生的 Fano 共振峰互不影响,且由单个T型腔可以实现两个 Fano 共振峰独立可调谐,故含金属挡板的 MIM 波导耦合双T型腔结构可以实 现四个 Fano 共振峰独立可调谐,故含金属挡板的 MIM 波导耦合双T型腔结构可以实

关键词 激光技术;表面等离极化激元;T型腔;挡板;Fano共振 中图分类号 O436 **文献标志码** A

doi: 10.3788/AOS202040.0414001

Sensing Characteristics of Multiple Independent Tunable Fano Resonances of Side-Coupled Cavity

Chen Ying¹, Xu Yangmei^{1*}, Xie Jinchao¹, Gao Xinbei¹, Cao Jinggang¹, Li Shaohua² ¹Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering,

Yanshan University, Qinhuangdao, Hebei 066004, China;

² Hebei Sailhero Environmental Protection Hi-tech Co., Ltd., Shijiazhuang, Hebei 050035, China

Abstract Based on the transmission characteristics of the surface plasmonic polaritons in sub-wavelength structures, a metal-insulator-metal (MIM) waveguide coupled dual T-shaped cavity with metallic baffle structure is proposed . Under the action of near-field coupling, the narrow discrete state formed by a single T-shaped cavity and the wide continuous state formed by a single baffle form the asymmetric double Fano formant through complex interference cancellation. Based on the coupled mode theory, the mechanism of Fano resonance of a MIM waveguide coupled single T-shaped cavity with single baffle structure is studied, and the structure is simulated by the finite element analysis. On this basis, the formation process of quadruple Fano resonance with double T-shaped cavity structure is studied, and the influence of upper and lower T-shaped cavity structure parameters on Fano formant is analyzed. The results show that the Fano formans generated by the upper and lower T-shaped cavity, so the MIM waveguide coupled double T-shaped cavity structure containing metal baffle can achieve four Fano formans that can be tuned independently. This structure can provide an effective theoretical reference for the design of differential sensor and wavelength division multiplexer.

Key words laser technique; surface plasmon polaritons; T-shaped cavity ; baffle; Fano resonance OCIS codes 140.3410; 130.6010; 230.4555; 240.6680; 260.5740

收稿日期: 2019-09-24;修回日期: 2019-10-22;录用日期: 2019-11-07

* E-mail: xymysu@163.com

基金项目:国家自然科学基金(61201112,61475133)、中国博士后基金项目(2018M630279)、河北省重点研发计划项目(19273901D)、河北省自然科学基金(F2016203188)、河北省博士后择优资助项目(D2018003028)、河北省高等学校科学技术研究项目(ZD2018243)

1 引 言

表面等离极化激元(SPPs)是金属表面的自由 电子俘获入射光,在交界面上产生的一种集体振荡 形式^[1-2]。它在纳米尺寸下存在显著的电磁场能量 增强效应,能够突破衍射极限,使光波在亚波长尺寸 上可传输且可实现对其的操控,为光子回路的小型 化、集成化提供可能^[3-5]。金属-介质-金属(MIM)波 导结构具有结构简单、损耗低、传输距离远、易于制 备等优点,已经成为光通信、传感等领域研究的热门 课题^[6-7]。目前,各种基于 SPPs 微纳光学功能器件 已经被设计出来,其中包含光开光^[8]、慢光器件^[9]、 滤波器^[10]、波分复用器^[11]等。在 MIM 波导中产生 的 Fano 共振效应,对环境折射率、结构参数及入射 光的偏振态等因素的改变均异常敏感,在表面增强 拉曼散射、集成光子器件、太阳能电池、生物传感等 领域存在着潜在的应用价值^[12-13]。

近年来,基于 Fano 共振特性的传感结构已经 有了不少的研究。Hayashi 等^[14]提出了一种由表 面等离子体极化模式与平面波导模式之间的相互耦 合产生 Fano 共振的方法,并讨论了该方法实施的 可能性。Zhang 等^[15]提出一种含方形环的 MIM 波 导结构,特殊的侧耦合方式使该结构兼备折射率传 感、波分复用、慢光等功能。Gao 等^[16]提出了由三 个一维光子晶体和缺陷层构成的微纳结构,其 Fano 共振效应是由异质结构和法布里-珀罗(Fabry-Perot, F-P)腔之间的相互弱耦合产生的,该结构具 有较高的品质因子。以上这些结构都是利用 Fano 共振效应来增加光与材料之间的相互作用,从而提 高结构的传感特性。然而,MIM 波导结构多得到单 重或双重 Fano 共振,其 Fano 共振峰的位置不是单独可调谐的。

基于以上分析,本文提出了一种单挡板 MIM 波导耦合双 T 型腔的光学微纳结构,既可以实现多 重 Fano 共振,又可实现 Fano 共振峰单独调谐。结 合耦合模理论对双重 Fano 共振的形成机理及传输 特性进行分析,并采用有限元法对该结构进行模拟 仿真。在此基础上,对四重 Fano 共振的产生过程 进行了研究,分别讨论了上下两个 T 腔的结构参数 对四个 Fano 共振峰的影响。结果表明,含金属挡 板的 MIM 波导耦合双 T 型腔结构可以实现四个 Fano 共振峰独立可调谐,并定量分析了其结构参 数对折射率传感特性的影响。该结构的设计可实现 光子回路的集成化和小型化,为多种待测样本的同 时检测和差动传感提供一定的理论参考。

2 建模与理论分析

2.1 理论模型

如图 1(a)所示,对含金属挡板的 MIM 波导耦 合上 T 腔结构进行分析,其中,T 型腔由横腔和竖 腔组成,其竖腔定义为腔 I,横腔定义为腔 I;金属 挡板的厚度为 d,参数 h_1 和 l_1 分别为腔 I 的高度 和腔 II 的宽度,腔 I 的宽度和腔 II 的高度均为 w_1 , 结构参数 g 为直波导与上 T 型腔之间的耦合间距。 结构参数分别为 $h_1 = 350$ nm, $l_1 = 220$ nm, $w_1 =$ 150 nm,g = 15 nm。为了保证直波导中只有横磁 (TM)波传输,直波导的宽度设为 w = 50 nm^[17]。

对于 TM 波,其在 MIM 波导结构的交界面上 产生 SPPs,进而一部分 SPPs 的电磁场能量沿着直 波导向前传输,而另一部分通过耦合进入 T 型腔,并

Fig. 1 Structure diagram and transmission spectrum. (a) Structure diagram of waveguide structure with single T-shaped cavity; (b) transmission spectra of waveguide system with and without T-shaped cavity; (c) Fano resonance spectrum of MIM waveguide coupled T-shaped cavity with single baffle 在腔内存在两种不同的传输路径。路径1是 SPPs 在腔Ⅰ中经过来回反射再进入直波导,路径2是 SPPs 经过腔Ⅰ进入到腔Ⅱ,再经由腔Ⅰ进入直 波导。

运用法布里-珀罗(FP)谐振腔共振条件对 T 型 腔进行定性和定量分析,将两个传输路径分别等效 成竖直的 FP 谐振腔和 L 型 FP 谐振腔,其腔的等效 长度分别为 $L_{eff1} = h_1, L_{eff2} = h_1/2 + l_1 + w_1/2$ 。当 含金属挡板的 MIM 波导耦合上 T 型腔时,透射谱 在 $\lambda = 859$ nm 和 $\lambda = 1080$ nm 处出现了两个非对称 的 Fano 共振峰,分别称为 FRP1 和 FRP2,如 图 1(c)所示。当 MIM 波导系统中无 T 型腔时,将 会产生较宽的连续态,如图 1(b)的虚线所示;当直 波导耦合 T 型腔无金属挡板时,将会产生较窄的离 散态,如图 1(b)的实线所示;两者在近场的作用下 相互耦合从而产生双重非对称的 Fano 共振峰。

2.2 理论分析

在图 1(a)的结构示意图中,灰色部分和白色部 分分别代表金属材料银(Ag)和空气(Air),且空气 的折射率为 1,Ag 的相对介电常数用德鲁德 (Drude)模型^[18]表示为

$$\varepsilon_{\rm m}(\omega) = \varepsilon_{\infty} - \omega_{\rm p}^2 / \omega(\omega + j\gamma),$$
 (1)

式中: ω 为入射光的频率;等离子振荡频率 $\omega_{p} =$ 1.38×10¹⁶ Hz;电子振荡频率 $\gamma = 2.73 \times 10^{13}$ Hz;无 穷介电常数 $\varepsilon_{\infty} = 3.7$;j 为虚数单位。

TM 波在 MIM 光波导结构中的色散关系^[19]可 以表示为

$$\varepsilon_i k_2 + \varepsilon_m k_1 \coth(-jk_1 w/2) = 0,$$
 (2)
式中: k_1 , k_2 分别为介质和金属的传播常数; w 为波
导的宽度; ε_i 和 ε_m 分别代表介质和金属的介电常
数。根据驻波理论,FP 谐振腔的等效长度 L_{eff} 与谐
振波长 λ 之间的关系^[20]为

 $\lambda = 2L_{eff} \operatorname{Re}(n_{eff})/(m - \varphi/\pi), m = 1, 2, 3...,$ (3) 式中: φ 是光波在谐振腔中损失的相位移; Re(n_{eff}) 为有效折射率的实部;m 为驻波的波数。基于耦合 模理论,对上述含金属挡板的 MIM 波导耦合上 T 型腔结构的传输特性进行分析。两谐振腔随时间演 化过程^[21]可表示为

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \left(\mathrm{j}\omega_{1} - \frac{1}{\tau_{\mathrm{ol}}} - \frac{1}{\tau_{\mathrm{el}}}\right)A + K_{1}(S_{1+} + S_{2+}) = \mathrm{j}\omega A , \qquad (4)$$

$$\frac{\mathrm{d}B}{\mathrm{d}t} = \left(\mathrm{j}\omega_2 - \frac{1}{\tau_{o2}} - \frac{1}{\tau_{e2}}\right)B + K_2(S_{1+} + S_{2+}) = \mathrm{j}\omega B, \qquad (5)$$

式中: $1/\tau_{oi}(i=1,2)$ 分别为竖直的 FP 谐振腔和 L 型 FP 谐振腔的固有损耗率; $1/\tau_{ei}(i=1,2)$ 分别为 竖直的 FP 谐振腔和 L 型 FP 谐振腔的衰减率; K_1 和 K_2 是波导中两 FP 谐振腔的输入耦合系数;A是竖直的 FP 谐振腔归一化后的振幅; B 是 L 型 FP 谐振腔归一化后的振幅; $\omega_i(i=1,2)$ 分别为两个 FP 谐振腔谐振时的频率; $S_{1,2+}$ 和 $S_{1,2-}$ 分别为波导 中输入和出射光的振幅(下标 1,2 分别代表输入端 口和输出端口;±代表两个传播波导模式的方向)。 根据能量守恒的原则,波导中能量的输入与输出关 系可以表示为

$$\binom{S_{1-}}{S_{2-}} = C\binom{S_{1+}}{S_{2+}} + K\binom{A}{B}, \qquad (6)$$

式中:散射矩阵 C 表示经过挡板的入射波与出射波 之间的耦合矩阵; K 是输出波与输出端口之间的耦 合矩阵。 C 的表达式为

$$\boldsymbol{C} = \begin{pmatrix} r & jt \\ jt & r \end{pmatrix},\tag{7}$$

式中:r、t分别表示反射振幅系数和透射振幅系数 且两者满足 $r^2 + t^2 = 1$ 。**K**的矩阵具体形式为

$$\mathbf{K} = \begin{pmatrix} -K_1^* & K_2^* \\ -K_1^* & -K_2^* \end{pmatrix},$$
(8)

式中:*代表对应表达式的共轭; $K_1 = \sqrt{1/\tau_{e1}} \exp(j\theta_1)$, $K_2 = \sqrt{1/\tau_{e2}} \exp(j\theta_2)$, θ_1 , θ_2 是相应的耦合相位。 联立(4)~(8)式,可得整个波导结构的透射率,其 透射率的表达式为

$$T(\omega) = \left| \frac{S_{2^{-}}}{S_{1^{+}}} \right|^{2} = \left| jt - \frac{1/\tau_{e1}}{j(\omega - \omega_{1}) + 1/\tau_{e1} + 1/\tau_{o1}} - \frac{1/\tau_{e2}}{j(\omega - \omega_{2}) + 1/\tau_{e2} + 1/\tau_{o2}} \right|^{2}$$
(9)

由(9)式可知,当t=1,r=0(无金属挡板)时, 由于 $1/\tau_{el}$ 和 $1/\tau_{ol}$ 远小于 $|j(\omega-\omega_1)|$,不含金属挡 板的波导系统将会得到较大的透射率,但随着入射 频率 ω 的增加且 ω 与腔 I 的共振频率 ω_1 相互接 近,透射谱线急剧下降进而形成较窄的阻带,当两者 相等时,又因为 $1/\tau_{el}$ 远远小于 $1/\tau_{el}$ (谐振腔内自身 损耗可以忽略不计),因此在离散态的透射曲线上出 现第一个波谷,如图 1(b)实线所示。同理,当入射 光的频率逐渐增加,且与 L 型 FP 腔的共振频率 ω_2 相等时,在离散态的透射曲线上将会有第二个波谷的 产生,如图 1(b)实线所示。当直波导中引入金属挡 板后,SPPs 不能沿着直波导直接向前传播,将会在挡 板处产生部分反射,该部分反射的能量一部分进入 T型腔中,进入T腔的能量存在两种不同的传输路 径,两种不同路径反射回来的能量与沿波导向前传 输的能量发生干涉相消,这使其相位在 $\lambda = 901$ nm 和 $\lambda = 1108$ nm 处发生急剧的变化,如图 2(a)、(b) 所示。急剧的相位变化使得透射谱中出现非对称的 双重 Fano 线型的传输谱,如图 1(c)所示。

图 2 相位图。(a) FRP1 处的相位图;(b) FRP2 处的相位图 Fig. 2 Phase diagram. (a) At FRP1; (b) at FRP2

借助 COMSOL 对该结构的稳态电场进行仿 真分析,其结构参数与图 1(a)保持模式下的稳态 电场分布如图 3 所示。当 SPPs 沿直波导向前传 输时,其中一部分能量被耦合到 T 型谐振腔中并 沿两个不同的路径传输。当 $\lambda = 859$ nm 时,入射 波的频率接近腔 I 的共振频率,使得腔 I 的电场 能量有一个增强的趋势,从腔 I 反射的光波与直 波导中的光波相互耦合,因相位相同发生干涉相 长,透射谱在 $\lambda = 859$ nm 处产生非对称的 FRP1, 如图 3(a)所示。同理,对于 $\lambda = 1080$ nm 时,入射 光的频率等于 L 型谐振腔的共振频率,从路径 2 反射回来的光波与直波导中的光波相位相同,使 得透射曲线在 $\lambda = 1080$ nm 处出现了 FRP2,如 图 3(c)所示。但对于 $\lambda = 901$ nm 及 $\lambda = 1108$ nm, T 型腔与金属挡板两个激发途径发生干涉相消, 使 SPPs 不能传输到输出端,透射谱在 $\lambda = 901$ nm 及 $\lambda = 1108$ nm 处出现透射零点,如图 3(b)、(d) 所示。

图 3 电场分量 E_z 分布图。(a) FRP1 在 λ =859 nm 处的电场分量 E_z 分布图;(b)第一个波谷在 λ =901 nm 处的电场分量 E_z 分布图;(c) FRP2 在 λ =1080 nm 处的电场分量 E_z 分布图;(d)第二个在处的 λ =1108 nm 处电场分量 E_z 分 布图

Fig. 3 E_Z field distribution. (a) E_Z field distribution of FRP1 at $\lambda = 859$ nm; (b) E_Z field distribution at the first transmission dip at $\lambda = 901$ nm; (c) E_Z field distribution of FRP2 at $\lambda = 1080$ nm; (d) E_Z field distribution at the second transmission dip at $\lambda = 1108$ nm

3 四重 Fano 共振的形成及特性分析

多重 Fano 共振在同时检测多种待测物及设计 差动传感、波分复用等方面有着显著的优势,因此,基于多重 Fano 共振原理的光学器件设计受到 国内外越来越多研究学者的关注。图 4(a)为带金 属挡板 MIM 波导耦合双 T 型腔的示意图结构,其 中,上下两个 T 型腔均由竖腔和横腔组成,与耦合 单 T 型腔结构类似,把下 T 型腔的竖腔定义为腔 Ⅲ,横腔定义为腔Ⅳ。参数 h₂ 和 l₂ 分别为腔Ⅲ的 高度和腔 IV 的宽度。上下 T 型腔的腔内宽度相同,与直波导之间的耦合间距相同。当单挡板 MIM 波导耦合双 T 型腔时,取参数分别为 $h_1 = 350 \text{ nm}, l_1 = 220 \text{ nm}, h_2 = 500 \text{ nm}, l_2 = 50 \text{ nm},$

 $w_1 = 150 \text{ nm}, g = 15 \text{ nm}, 除了出现原来的 FRP1 和$ $FRP2 外, 在透射谱 <math>\lambda = 698 \text{ nm} \ \mathcal{D} \ \lambda = 1280 \text{ nm} \ \mathcal{D}$ 出现两个新的 Fano 共振峰, 分别称为 FRP3 和 FRP4, 如图 4(b)所示。

图 4 四重 Fano 共振。(a)含双 T 型腔的波导结构示意图;(b) 四重 Fano 共振对应的透射曲线;(c)高度 h₁ 不同时对应的 透射曲线;(d)宽度 l₁ 不同时对应的透射曲线;(e)高度 h₂ 不同时对应的透射曲线;(f)宽度 l₂ 不同时对应的透射 曲线

Fig. 4 Quadruple Fano resonance. (a) Structure diagram of waveguide with dual T-shaped cavity; (b) transmission spectrum corresponding to quadruple Fano resonance; (c) transmission spectra at different h_1 ; (d) transmission spectra at different l_1 ; (e) transmission spectra at different h_2 ; (f) transmission spectra at different l_2

首先,分析上T型腔结构参数 h_1 和 l_1 对四个 共振峰的影响。保持宽度 l_1 =220 nm不变,其他参 数与图 4(a)一致,高度 h_1 从 320 nm 增加到 370 nm(步长 10 nm),图 4(c)给出了不同高度 h_1 对应的光谱曲线;同理,保持腔 II 高度 h_1 =350 nm 不变,其他参数保持不变,分析参数 l_1 对共振峰位 置的影响,参数 l_1 以步长 10 nm 从 200 nm 增加到 250 nm,图 4(d)给出了不同参数 l_1 对应的光谱 曲线。

由图 4(a)可知,竖直 FP 腔的等效长度 $L_{eff1} = h_1$,仅受参数 h_1 的影响,而 L 型 FP 谐振腔的等效 长度 $L_{eff2} = h_1/2 + l_1 + w_1/2$,同时受参数 h_1 和 l_1 的影响。因此,改变参数 l_1 对 FR1 的位置不会造 成影响。改变参数 h_1 的值,对两个 Fano 共振峰的 位置均造成影响,使两个共振峰的位置均发生线 性红移,如图 4(c)、(d)所示。当参数 h_1 或参数 l_1 改变时,FRP3 和 FRP4 的位置均未发生变化;与 此同时,改变参数 l_1 ,仅仅使 FRP2 发生了红移, FRP1 的位置几乎不发生变化,而改变参数 h_1 ,两 个共振峰的位置均发生了红移,但是两个共振峰 漂移量不同。数值模拟结果恰与等效 FP 理论 一致。

同理,分析了下 T 型腔结构参数 h_2 和 l_2 对四 个 Fano 共振峰的影响。下 T 型腔参数的改变对 FRP1 和 FRP2 两个 Fano 共振峰几乎不产生影响。 FRP3 和 FRP4 随着参数 h_2 的增加均发生了线性 红移,如图 4(e)所示;参数 l_2 的改变,仅仅对 FRP3 产生了影响,如图 4(f)所示。通过以上分析不难发 现:FRP1 和 FRP2 是由上 T 型腔产生的,FRP3 和 FRP4 是由下 T 行腔产生的。

4 结构传感特性分析

灵敏度 S 和优质因子(FOM, X_{FOM})是评价纳 米级折射率传感器的两个重要指标,灵敏度反映单 位共振峰的改变量与单位折射率改变量之间的比值 关系, X_{FOM}则是指在特定频率 ω'下,待测样本折射 率的变化引起的相对透射强度的变化。两个物理 量^[22-23]分别定义为

$$S = \Delta \lambda / \Delta n , \qquad (10)$$

$$X_{\text{FOM}} = \frac{\Delta T}{T \Delta n} = \frac{T(\omega', n) - T(\omega', n_0)}{T(\omega', n_0) \Delta n}, \quad (11)$$

式中: $T(\omega',n_0)$ 为待测样本折射率为 n_0 时所对应的透射系数; $T(\omega',n)$ 为折射率为n时所对应得透射系数; $\Delta n = n - n_0$ 为环境改变所引起的折射率差值。

图 5(a)给出了不同环境折射率条件下的对应 透射谱,其折射率从 1.00 增加到 1.10,其步长为 0.02,其他参数和图 4(a)一致。四个共振峰的位 置均随着环境折射率的增加而发生线性红移,与 驻波理论一致。由(3)式可知,有效折射率与共振 波长呈正比关系,即随着环境有效折射率的增加, 共振波长也增加。图 5(b)给出了有效折射率与共 振波长的关系,可以看出四个 Fano 共振峰的位置 与有效折射率的变化呈近似线性的关系。同时由 (10) 式得出, FRP3、FRP1、FRP2及FRP4四个共 振峰的灵敏度分别为 700 nm/RIU、840 nm/RIU、 1006 nm/RIU 和 1130 nm/RIU(RIU 为折射率单 元),该波导结构实现了折射率传感的功能。 图 5(c)给出了不同波长处对应的 X_{FOM} ,当该波导 结构发生谐振时,此谐振频率下 FOM 值在对应的 波段处将会取得极大值。其中,图 5(c)曲线上的 四个极大值分别对应 FRP3、FRP1、FRP2 及 FRP4 四个共振峰处的 FOM 值,分别为 2.82×10^4 、 1.04×10⁴、3.72×10⁴和1.53×10⁴。利用多重 Fano 共振独立可调谐特性和高 X_{FOM} 特性,可以在 多个频段实现对光谱的同时调制,有效降低辐射 展宽。该特性可为波分复用器等器件的设计提供 一定的理论依据。

图 5 传感特性分析。(a)折射率不同时对应的透射曲线;(b) Fano 共振峰波长与折射率之间的关系; (c)不同波长所对应的 FOM 值

Fig. 5 Analysis of sensing characteristics. (a) Transmission spectra of Fano structure for different refractive indices;(b) peak wavelength as a function of refractive index; (c) FOM at different wavelengths

5 结 论

提出了一种含金属挡板的 MIM 波导耦合双 T 型腔的紧凑型光波导结构。当 TM 波入射到该波 导结构时,将会在 MIM 波导的交界面上产生 SPPs,SPPs 在挡板处产生较宽的连续态。同时,光 信号进入上下 T 型腔形成较窄的离散态,在近场作 用下,两者相互耦合形成多重 Fano 共振。通过研 究多重 Fano 共振产生机理和结构参数对其传输特 性和传感特性的影响,可以发现上下两 T 型腔产生 的 Fano 共振峰互不影响,且参数 l₁ 的变化仅对 FRP2 产生影响,参数 l_2 的变化仅对 FRP3 产生影 响。参数 $h_1(ext{org} h_2)$ 的改变对上(ext{org})T 型腔各自 的两个 Fano 共振峰峰位均产生影响。因此,利用 含金属挡板的 MIM 波导耦合双 T 型腔结构可以实 现四个 Fano 共振峰的独立调谐。Fano 共振峰对环 境折射率的改变异常敏感,故该结构具备折射率传 感特性。该结构通过简单的结构参数调节很容易得 到较高的 X_{FOM} 和灵敏度 S,当参数分别为 $h_1 =$ 350 nm, $l_1 = 220$ nm, $h_2 = 500$ nm, $l_2 = 50$ nm, $w_1 = 150$ nm, g = 15 nm 时, FRP1、FRP2、FRP3 及 FRP4 四个共振峰的灵敏度 S 分别为 840 nm/RIU、 1006 nm/RIU、700 nm/RIU 和 1130 nm/RIU, X_{FOM} 分别高达 1.04×10^4 、 3.72×10^4 、 2.82×10^4 和 1.53×10^4 。故结构的设计可为多待测物的同时检测,差动传感和波分复用器等器件的设计提供一定的理论依据。

参考文献

- Schuller J A, Barnard E S, Cai W S, et al. Plasmonics for extreme light concentration and manipulation [J]. Nature Materials, 2010, 9(3): 193-204.
- [2] Piao X J, Yu S, Park N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J]. Optics Express, 2012, 20(17): 18994-18999.
- [3] Shen X R, Wang Y K, Chen Q S, et al. Detuned square ring resonators for multiple plasmon-induced transparencies in metal-insulator-metal waveguide [J]. Applied Physics Express, 2015, 8(11): 112201.
- Zafar R, Salim M. Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor
 [J]. IEEE Sensors Journal, 2015, 15(11): 6313-6317.
- [5] Aparna U, Mruthyunjaya H S, Sathish Kumar M. Plasmonic wavelength demultiplexer with mode conversion capabilities [J]. Plasmonics, 2018, 13(2): 511-517.
- [6] Li C, Li S L, Wang Y L, et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor [J]. IEEE Photonics Journal, 2017, 9(6): 17282285.
- [7] Hirai Y, Matsunaga K, Neo Y, et al. Observation of Goos-Hänchen shift in plasmon-induced transparency
 [J]. Applied Physics Letters, 2018, 112(5): 051101.
- [8] Xu H, Li H J, Li B X, et al. Influential and theoretical analysis of nano-defect in the stub resonator[J]. Scientific Reports, 2016, 6: 30877.
- [9] Liu F, Xue L F, Bart H, et al. Plasmon-induced transparency and Fano resonances in metal-insulatormetal nanorod dimers: a numerical analysis[J]. Optik, 2018, 157: 326-333.
- [10] Pinton N, Grant J, Collins S, et al. Exploitation of magnetic dipole resonances in metal-insulator-metal plasmonic nanostructures to selectively filter visible light[J]. ACS Photonics, 2018, 5(4): 1250-1261.
- Zhang J W, Dai S Q, Zhong J Z, et al. Wavelengthmultiplexing surface plasmon holographic microscopy
 [J]. Optics Express, 2018, 26(10): 13549-13559.

- [12] Chen Z, Yu L, Wang L L, et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system [J]. IEEE Photonics Technology Letters, 2015, 27(16): 1695-1698.
- [13] Jankovic N, Cselyuszka N. Multiple Fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing [J]. Sensors, 2018, 18(1): 287.
- [14] Hayashi S, Nesterenko D V, Rahmouni A, et al. Light-tunable Fano resonance in metal-dielectric multilayer structures [J]. Scientific Reports, 2016, 6: 33144.
- [15] Zhang Z J, Yang J B, He X, et al. Plasmonic filter and demultiplexer based on square ring resonator[J]. Applied Sciences, 2018, 8(3): 462.
- [16] Gao W, Hu X Y, Li C, et al. Fano-resonance in onedimensional topological photonic crystal heterostructure
 [J]. Optics Express, 2018, 26(7): 8634-8644.
- [17] Chen Y, Cao J G, Xu Y M, et al. Fano resonance sensing characteristics of metal-dielectric-metal waveguide coupling square cavity with bimetallic baffle[J]. Chinese Journal of Lasers, 2019, 46(2): 0213001.

陈颖,曹景刚,许扬眉,等.双金属挡板金属-电介质-金属波导耦合方形腔的 Fano 共振传感特性[J]. 中国激光,2019,46(2):0213001.

- [18] Gai H F, Wang J, Tian Q. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 2007, 46 (12): 2229-2233.
- [19] Kekatpure R D, Hryciw A C, Barnard E S, et al. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator[J]. Optics Express, 2009, 17(26): 24112-24119.
- [20] Luo S W, Li B, Xiong D S, et al. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure[J]. Plasmonics, 2017, 12(2): 223-227.
- [21] Li Q, Wang T, Su Y K, et al. Coupled mode theory analysis of mode-splitting in coupled cavity system[J]. Optics Express, 2010, 18(8): 8367-8382.
- [22] Wen K H, Hu Y H, Chen L, et al. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide[J]. Plasmonics, 2016, 11(1): 315-321.
- [23] Zhao X, Zhang Z, Yan S. Tunable Fano resonance in asymmetric MIM waveguide structure [J]. Sensors, 2017, 17(7): 1494.